Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Two-step conformational changes in a coronavirus envelope glycoprotein mediated by receptor binding and proteolysis.

Identifieur interne : 002981 ( Main/Exploration ); précédent : 002980; suivant : 002982

Two-step conformational changes in a coronavirus envelope glycoprotein mediated by receptor binding and proteolysis.

Auteurs : Shutoku Matsuyama [Japon] ; Fumihiro Taguchi

Source :

RBID : pubmed:19706706

Descripteurs français

English descriptors

Abstract

The coronaviruses mouse hepatitis virus type 2 (MHV-2) and severe acute respiratory syndrome coronavirus (SARS-CoV) utilize proteases to enter host cells. Upon receptor binding, the spike (S) proteins of both viruses are activated for membrane fusion by proteases, such as trypsin, present in the environment, facilitating virus entry from the cell surface. In contrast, in the absence of extracellular proteases, these viruses can enter cells via an endosomal pathway and utilize endosomal cathepsins for S protein activation. We demonstrate that the MHV-2 S protein uses multistep conformational changes for membrane fusion. After interaction with a soluble form of the MHV receptor (CEACAM1a), the metastable form of S protein is converted to a stable trimer, as revealed by mildly denaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Liposome-binding assays indicate that the receptor-bound virions are associated with the target membrane through hydrophobic interactions. The exposure of receptor-bound S protein to trypsin or cathepsin L (CPL) induces the formation of six-helix bundles (6HB), the final conformation. This trypsin- or CPL-mediated conversion to 6HB can be blocked by a heptad repeat peptide known to block the formation of 6HB. Although trypsin treatment enabled receptor-bound MHV-2 to enter from the cell surface, CPL failed to do so. Interestingly, consecutive treatment with CPL and then chlorpromazine enabled a portion of the virus to enter from cell surface. These results suggest that trypsin suffices for the induction of membrane fusion of receptor-primed S protein, but an additional unidentified cellular factor is required to trigger membrane fusion by CPL.

DOI: 10.1128/JVI.00959-09
PubMed: 19706706


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Two-step conformational changes in a coronavirus envelope glycoprotein mediated by receptor binding and proteolysis.</title>
<author>
<name sortKey="Matsuyama, Shutoku" sort="Matsuyama, Shutoku" uniqKey="Matsuyama S" first="Shutoku" last="Matsuyama">Shutoku Matsuyama</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Virology III, National Institute of Infectious Diseases, 4-7-1 Gakuen Musashi-Murayama, Tokyo 208-0011, Japan. matuyama@nih.go.jp</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Virology III, National Institute of Infectious Diseases, 4-7-1 Gakuen Musashi-Murayama, Tokyo 208-0011</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Taguchi, Fumihiro" sort="Taguchi, Fumihiro" uniqKey="Taguchi F" first="Fumihiro" last="Taguchi">Fumihiro Taguchi</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19706706</idno>
<idno type="pmid">19706706</idno>
<idno type="doi">10.1128/JVI.00959-09</idno>
<idno type="wicri:Area/PubMed/Corpus">001841</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001841</idno>
<idno type="wicri:Area/PubMed/Curation">001841</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001841</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001745</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001745</idno>
<idno type="wicri:Area/Ncbi/Merge">001F88</idno>
<idno type="wicri:Area/Ncbi/Curation">001F88</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">001F88</idno>
<idno type="wicri:Area/Main/Merge">002A22</idno>
<idno type="wicri:Area/Main/Curation">002981</idno>
<idno type="wicri:Area/Main/Exploration">002981</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Two-step conformational changes in a coronavirus envelope glycoprotein mediated by receptor binding and proteolysis.</title>
<author>
<name sortKey="Matsuyama, Shutoku" sort="Matsuyama, Shutoku" uniqKey="Matsuyama S" first="Shutoku" last="Matsuyama">Shutoku Matsuyama</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Virology III, National Institute of Infectious Diseases, 4-7-1 Gakuen Musashi-Murayama, Tokyo 208-0011, Japan. matuyama@nih.go.jp</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Virology III, National Institute of Infectious Diseases, 4-7-1 Gakuen Musashi-Murayama, Tokyo 208-0011</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Taguchi, Fumihiro" sort="Taguchi, Fumihiro" uniqKey="Taguchi F" first="Fumihiro" last="Taguchi">Fumihiro Taguchi</name>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Carcinoembryonic Antigen (metabolism)</term>
<term>Cathepsins (metabolism)</term>
<term>Liposomes (metabolism)</term>
<term>Membrane Glycoproteins (chemistry)</term>
<term>Membrane Glycoproteins (genetics)</term>
<term>Membrane Glycoproteins (metabolism)</term>
<term>Mice</term>
<term>Murine hepatitis virus (metabolism)</term>
<term>Protein Binding</term>
<term>Protein Conformation</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Trypsin (metabolism)</term>
<term>Viral Envelope Proteins (chemistry)</term>
<term>Viral Envelope Proteins (genetics)</term>
<term>Viral Envelope Proteins (metabolism)</term>
<term>Virus Internalization</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Antigène carcinoembryonnaire (métabolisme)</term>
<term>Cathepsines (métabolisme)</term>
<term>Conformation des protéines</term>
<term>Glycoprotéine de spicule des coronavirus</term>
<term>Glycoprotéines membranaires ()</term>
<term>Glycoprotéines membranaires (génétique)</term>
<term>Glycoprotéines membranaires (métabolisme)</term>
<term>Liaison aux protéines</term>
<term>Liposomes (métabolisme)</term>
<term>Protéines de l'enveloppe virale ()</term>
<term>Protéines de l'enveloppe virale (génétique)</term>
<term>Protéines de l'enveloppe virale (métabolisme)</term>
<term>Pénétration virale</term>
<term>Souris</term>
<term>Trypsine (métabolisme)</term>
<term>Virus de l'hépatite murine (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Membrane Glycoproteins</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Membrane Glycoproteins</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carcinoembryonic Antigen</term>
<term>Cathepsins</term>
<term>Liposomes</term>
<term>Membrane Glycoproteins</term>
<term>Trypsin</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Glycoprotéines membranaires</term>
<term>Protéines de l'enveloppe virale</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Murine hepatitis virus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Antigène carcinoembryonnaire</term>
<term>Cathepsines</term>
<term>Glycoprotéines membranaires</term>
<term>Liposomes</term>
<term>Protéines de l'enveloppe virale</term>
<term>Trypsine</term>
<term>Virus de l'hépatite murine</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Mice</term>
<term>Protein Binding</term>
<term>Protein Conformation</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Virus Internalization</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Conformation des protéines</term>
<term>Glycoprotéine de spicule des coronavirus</term>
<term>Glycoprotéines membranaires</term>
<term>Liaison aux protéines</term>
<term>Protéines de l'enveloppe virale</term>
<term>Pénétration virale</term>
<term>Souris</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The coronaviruses mouse hepatitis virus type 2 (MHV-2) and severe acute respiratory syndrome coronavirus (SARS-CoV) utilize proteases to enter host cells. Upon receptor binding, the spike (S) proteins of both viruses are activated for membrane fusion by proteases, such as trypsin, present in the environment, facilitating virus entry from the cell surface. In contrast, in the absence of extracellular proteases, these viruses can enter cells via an endosomal pathway and utilize endosomal cathepsins for S protein activation. We demonstrate that the MHV-2 S protein uses multistep conformational changes for membrane fusion. After interaction with a soluble form of the MHV receptor (CEACAM1a), the metastable form of S protein is converted to a stable trimer, as revealed by mildly denaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Liposome-binding assays indicate that the receptor-bound virions are associated with the target membrane through hydrophobic interactions. The exposure of receptor-bound S protein to trypsin or cathepsin L (CPL) induces the formation of six-helix bundles (6HB), the final conformation. This trypsin- or CPL-mediated conversion to 6HB can be blocked by a heptad repeat peptide known to block the formation of 6HB. Although trypsin treatment enabled receptor-bound MHV-2 to enter from the cell surface, CPL failed to do so. Interestingly, consecutive treatment with CPL and then chlorpromazine enabled a portion of the virus to enter from cell surface. These results suggest that trypsin suffices for the induction of membrane fusion of receptor-primed S protein, but an additional unidentified cellular factor is required to trigger membrane fusion by CPL.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
<region>
<li>Région de Kantō</li>
</region>
<settlement>
<li>Tokyo</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Taguchi, Fumihiro" sort="Taguchi, Fumihiro" uniqKey="Taguchi F" first="Fumihiro" last="Taguchi">Fumihiro Taguchi</name>
</noCountry>
<country name="Japon">
<region name="Région de Kantō">
<name sortKey="Matsuyama, Shutoku" sort="Matsuyama, Shutoku" uniqKey="Matsuyama S" first="Shutoku" last="Matsuyama">Shutoku Matsuyama</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002981 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002981 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19706706
   |texte=   Two-step conformational changes in a coronavirus envelope glycoprotein mediated by receptor binding and proteolysis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19706706" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021